FLOW-DAQ

REV 1.02 2008

1.1		4
1.2		4
1.3	Ulsoflow 309F	5
1.4		5
1.5		6
1.6		7
17		., 8
1.7		

2.

2.1		9
2.1.1		
2.1.2		
2.1.3		10
2.2		
2.2.1		
2.2.2		
2.3	&	
2.3.1		
2.3.2		
2.3.3		
2.3.4	RS232/RS485	
2.3.5		

3.1		14
3.2		15
3.2.1		15
3.2.2		16
3.2.2.1 V		16
3.2.2.2 W		16
3.2.2.3 Z		17
3.2.3		17
3.3		18
3.3.1		18
3.3.2		19
3.3.3 TOM/TC	DS	19
3.3.4		19

4.			
	4.1		21
	4.2		21
	4.3		21
	4.4		22
	4.5		22
	4.6	/	22
	4.7		22
	4.8		22
	4.9		22
	4.10		23
	4.11		23
	4.12		23
	4.13	&	24
	4.14		24
	4.15 4~20 n	nA	24
	4.16		25
	4.17		25
	4.18		26
	4.19		27
	4.20		27
	4.21		27
	4.22 &		27
	4.23 LCD		28
	4.24 , ,		28
	4.25		28
	4.26		29
	4.27		29
	4.28		29
	4.29		29
	4.30	ESN	30
5	R.		
0.	51	•	21
	5.2		ວາ ຊາ
	5.2		
6			
0.	6.1		
	-··		

0.1	
6.2	

7.1		63
7.2		63
7.3		64
7.3.1	P	64
7.3.2	W	
7.3.3	N	
7.3.4	&	65
7.4		65

8.

8.1	
8.2	
8.3	

9 1		69
9.2	(Pipe & Liner)	
9.3	、 · · · · · · · · · · · · · · · · · · ·	
9.4		80
9.4.1 Carbone Steel & Stainless ste	el & Copper	80
9.4.2 PVC & PVC Schedule & P.P-H	IP & PVDF	80
9.4.3 PEM & Ductile Iron		81

1.3 Ulsoflow 309F

- HVAC
- . (가), .
- .
- •
- •
- .
- •
- •
- •
- •
- •

Ulsoflow 309 F - M - N - 2 - C10 - R2

Uniflow 309 – – – 220VAC - 10 meter - Rs 232

Transmitter				
Accuracy	Better than ± 1% of Reading at Velocity >0.2m/sec			
Repeatability	0.2 %			
Linearity	0.5 %			
Response Time	0.5 sec			
Velocity Range	±32 m/sec, bi-directional			
Measurement Time	40 pico-second			
Diaplay	40 Character(2 line x 20) Alphanumeric Backlight Blue LCD			
Display	Flow rate/Totalizer(Pos.Net,Neg)/Velocity/Date & Time/Error message etc.			
Power Supply	220VAC, 50/60Hz and 8~26VDC			
Power Consumption	Less than 2W			
	Analog Output : 0/4~20mA (Max road 750)			
Output	Pulse Output : 0~9999Hz, Open Collector			
	Relay output : SPST Max 1Hz			
Input	Max 5 Channel Analog Input (4~20mA)			
Communication	RS 232 Serial Interface (st), RS485(op)			
History	Last 64 data of Day/Month/Year totalizer, On/Off event.			
Environment	Temperature : -30~80 , Humidity : 85% RH			
Protection Rate	IP 65			
Liquid Type	Virtually all non-aerated homogeneous liquids			
Liquid Temperature	0 ~ 100			
Security	System Lock, Keypad lock by user selected access code			
Conduit Connector	PG 13.5			
Enclosure Material	Main Box & Protection Cover : ABS, Clear Window : Polycarbonate			
Size	199(W) x 180(H) x 105(D) (unit : mm)			
Weight	Approx : 1.4 Kg			
Transducer				
	S : DN 15mm ~ DN 100mm (Option)			
Application Size	M : DN 50mm~DN 1000mm (Standard)			
	L : DN 300mm ~ DN 6000mm (Option)			
Pipe Material	Most material of Pipe (11 kinds of material at menu list and others)			
Cable Length	9 meter (st), Max 300m as 15, 30, 50, 100 ,150, 200, 250, 300 meter			
Working Temperature	-40 ~ 100			
Protection Rate	IP 68			

2 -

1. LCD : () , ,

-

- 2. :
- 3. :
- 4. AC :
- 5. DC
- 6. : .
- 7. , Rs232
- 8. DB9
- 9. RS 485
- (Option)

2.1

2.1.1 (: mm)

2.1.3

(: mm)

5 -

_

6 –

-

2.3.3.3							
Ulsoflow 309F				가		Open	
Close .	me	가 enu 79	:				
가 .	19 20						
2.3.3.4 RS232/RS4	185						
Ulsoflow 309F		DB9 RS-23	2C				
75-115200 baud							
RS 232				(2	5). RS 485	5	
	RS-232	(25)					
" 2"	9						
				RS 485	A+, B⁻	22, 23	
가 menu 62 485	Rs-232C	RS-485				Baud Rate " 7	RS
33							
2.3.3.5 <i>Ulsoflow 309F</i> "2"	11 7 11		17 18 フト	5		가	

3.1

UlsoFlow 309F	123
	456
	789
MENU Clear enter	
down	

7 -

40

. .

8 -

-

3.2.2

3.2.2.1 V

V

25mm 400mm (1 ~16)

9 –

_

12 -

-

17

(Volume) . Ulsoflow 309F . OCT input 2mA 7 I "1" menu 80 (Relay output) 8 " output as batch controller" OCT

Group	Description	Menu No		Group	Description	Menu No	
	Flow rate & Net Totalizer	menu	00		Current Loop Mode	menu	55
	Flow rate & Velocity	menu	01	Current	Input 4 mA value	menu	56
	Flow rate & Positive Totalizer	menu	02	Loop	Input 20 mA Value	menu	57
	Flow rate & Negative Totalizer	menu	03	Output	Current Loop Checkup	menu	58
Display	Date, Time & Flow rate	menu	04		Current Loop Output Display	menu	59
	Caloric / Total Caloric	menu	05	Identify	Date & Time Setting	menu	60
	Analog input Value	menu	06	Data	Software Version	menu	61
	System Error Code	menu	08	Analogue	Analogue Input 1 value	menu	63
	Net Flow Today	menu	09	Input	out Analogue Input 2 value		64
	Pipe Outer Diameter	menu	11	Fraguanay	Frequency Range of F.O	menu	67
	Pipe Wall Thickness	menu	12	Output	Low Frequency output of Flow Rate	menu	68
Pipe Parameter	Pipe Inner Diameter	menu	13	Setup	High Frequency output of Flow Rate	menu	69
	Pipe Material	menu	14	LCD	LCD Backlight option	menu	70
	Pipe Sound Velocity	menu	15	Option	LCD Contrast	menu	71
Lines	Linear Material	menu	16	Timer	Working Timer	menu	72
Liner	Liner Sound Velocity	menu	17		Low Value of Alarm No 1	menu	73
Parameter	Linear Thickness	menu	18	Alarm	High Value of Alarm No 1	menu	74
Elected.	Fluid Type	menu	20	Setup	Low Value of Alarm No 2	menu	75
Fiuld	Fluid Sound Velocity	menu	21		High Value of Alarm No 2	menu	76
Parameter	Fluid Viscosity	menu	22		Beeper Setup	menu	77
Tanandaraa	Transducer Type	menu	23	01	PULSE output Setup	menu	78
Deremeter	Transducer Mounting Method	menu	24	Other	Relay Output Setup	menu	79
Falameter	Transducer Mounting Space	menu	25		Select Batch Control Input Signal	menu	80
Evtro	Parameter SAVE	menu	26	a Ontion	Batch Controller Setup	menu	81
Extra	Cross-sectional Area	menu	27	Option	Date Totalizer	menu	82
TUNCTION	Hold previous data	menu	28		Automatic Flow Correction	menu	83
Flow Rate	Measurement Unit	menu	30		Energy Unit Selection	menu	84
Setup	Flow Rate Unit	menu	31	Ontonia	Temperature Selection	menu	85
	Totalizer Unit	menu	32	Caloric	Specific Heat Selection	menu	86
	Totalizer Multiplier	menu	33	Ontion	Energy Totalizer ON/OFF	menu	87
Totolizor	Net Totalizer On/Off	menu	34	Option	Energy Multiplier	menu	88
Setup	Positive Totalizer On/Off	menu	35		Reset Energy Totalizer	menu	89
Setup	Negative Totalizer On/Off	menu	36		Signal Strength & Signal Quality	menu	90
	Totalizer Reset	menu	37		TOM/TOS x 100	menu	91
	Manual Totalizer	menu	38	Diagnoses	Fluid Sound Velocity	menu	92
	Damping	menu	40		Total Time & Delta Time	menu	93
	Low Flow Cutoff Value	menu	41		Reynolds Number & Factor	menu	94
Colibration	Set Zero	menu	42		Power On/Off Time	menu+up	0
Calibration	Reset Zero	menu	43		Total Work Hours	menu+up	1
	Manual Zero Calibration	menu	44	Extra	Last Power Off Time	menu+up	2
	Scale Factor	menu	45	Function	Last Power Rate	menu+up	3
	Network Identifying Address Code	menu	46		ON/OFF Times	menu+up	4
Option	System Lock	menu	47		Calculator	menu+up	5
	Keypad Lock Code	menu	48				

menu 1 7 ()	menu 16	Liner Sound Velocity	2007 m/s
menu 1 8 ()	·	Liner Thickness	11 mm
"Other"		menu 16		
menu 2 0 ()		Fluid Type 0 . Water	[20
. "Other"		menu 21	Fluid Type 1 . Sea Water	[20
			Fluid Type 2. Kerosene	[20
			Fluid Type 3. Gasoline	[20
			Fluid Type 4. Fuel Oil	[20
			Fluid Type 5. Crude Oil	[20
			Fluid Type 6.Propane (-45C)	[20
			Fluid Type 7. Butane (0C)	[20
			Fluid Type 8. Other	[20
			Fluid Type 9. Diesel oil	[20

		Fluid Type 10. Castor Oil	[20
		Fluid Type 11. Peanut Oil	[20
		Fluid Type 12. Gasoline #90	[20
		Fluid Type 13. Gasoline #93	[20
		Fluid Type 14. Alcohol	[20
		Fluid Type 15. Water (125 C)	[20
menu 2 1 () menu 20	Fluid Sound Velocity	1234 m/s
"Other" Menu 20			
menu 2 2 ()	Fluid Viscosity	1.0038 cSt
"Other" Menu 20	menu 20	<u>t</u>	
menu 2 3 ()	Transducer Type 10. Standard M1	
"10. Standard M1"			

menu 2 6 ()	Param 0. Er
18	가	Param 1. Er
0. Entry to Save (1. Entry to Load (2. To Browse()) "Entry to Save" ID code 7 up enter 7 ID . "Entry ID "Entry ID) enter ID ntry to Load",	Paran 2. To
	menu 25	
menu 2 7 ()	Cross
menu 2 8 ("Yes") フŀ	Hold
menu 3 0 ()	Meast 0.
0. Metric() 1. English(,)		Measu 1.

Cross-Sectional Area	456.78 mm2
Hold with Poor Sig	[28
Yes	
Measurement Unit in	
Measurement Unit in 0. Metric	

menu 3 1 ()	Flow Rate Units [31 M3/h
		Flow : Unit / Time 0.Cubic Meters (m3)
		Flow : Unit / Time 1.Liters (1)
		Flow : Unit / Time 2.US Gallons (GAL)
		Flow : Unit / Time 3.Imperial Gallons
		Flow : Unit / Time 4.Million Gallons (mg)
		Flow : Unit / Time 5.Cubic Feet (cf)
		Flow : Unit / Time 6.US Barrels (US bbl)
		Flow : Unit / Time 7.Imperial Barrels
71 71		Flow : Unit / Time 8.Oil Barrels
		Cubic meters (0) / Day
		Cubic meters (0) / Hour
		Cubic meters (0) / Min
		Cubic meters (0) / Sec

	Totalizer Multiplier 5. x 100
	Totalizer Multiplier 6. x 1000
	Totalizer Multiplier 7. x 10000 (1E+4)
menu 3 4 (On/Off)	
On/off "ON" , "OFF" 가 . "OFF" 가	NET Totalizer [34 ON
menu 00 "On" .	
menu 3 5 (On/Off)	POS Totalizer [35 ON
On/off . "ON" , "OFF"가 . "OFF"가 	
"On" .	
menu 3 6 (On/Off)	NEG Totalizer [36 ON
On/off . "ON" , "OFF" 가 . "OFF" 가 menu 03	
"On"	Totalizer Reset ? [37
menu 3 7 ()	Selection
enter up down	Select Totalizer > None
"YES"	Select Totalizer > All

	Select Totalizer > Net Totalizer
	Select Totalizer > Pos Totalizer
	Select Totalizer > Neg Totalizer
7 clear	Select Totalizer > Energy Totalizer
	,,
menu 3 8 ()	Manual Totalizer [38 Press ENT When Ready
enter enter	Manual Totalizer [38 ON 0 x m3
menu 4 0 ()	Damping [40 5 sec
0 999 . 0 , 999 .	<u>[]</u>
single-section RC filter	
3 10	
menu 4 1 ()	Low Flow Cutoff Val 0.03 m/sec
0	

FLOW-DAQ

0.03		가	
±0.03		"0"	
	0.03		

가 Zero Point Zero Point가 Zero

	[46
88	
	88

System Lock **** Unlocked ****	[47
Keymad Lock Code	۲48
Entry	

menu 5 5 ()		
		CL Mode Select 0. 4 - 20 mA	[55
, 0. 4-20mA Output Mode : 4-20mA		CL Mode Select 1. 0 - 20 mA	[55
1, 0-20mA Output Mode : 0-20mA		CL Mode Select 2. 0-20mA Via RS 232	[55
2. RS232 controls 0-20mA : Rs 232 Serial Port		CL Mode Select 3. 0 - 20 mA vs Fluid	[55
3. 4-20mA	4~20mA	CL Mode Select 4. 20 - 4 - 20 mA	[55
CL		CL Mode Select 5. 0 - 4 - 20 mA	[55
4. 20-4-20mA Mode : 20-4-20mA		CL Mode Select 6. 20 - 0 - 20 mA	[55
5. 0-4-20mA Mode :			
0-4-20mA		CL Mode Select 7. 4 - 20 mA vs. Vel	[55
6. 20-0-20mA Mode : 20-0-20mA		CL Mode Select 8. 4 - 20 mA vs Energy	[55
7. 4-20mA	CL		
8. 4-20mA CL			
menu 5 6 (4mA)	CL 4 mA Output V	alue 0 m3/h
4mA 0mA (4mA 0mA menu 55 menu 31 "velocity 4-20mA" 가 menu 55 m/s)		

menu 5 7	(20mA)	CL 20 mA Output Value
20mA 20mA.	menu 31	1000 m3/h
menu 5 8	()	CL Checkup [58 Press ENT When Ready
enter input	up down OmA, 4mA 24mA	
. 가 29 "	"4 " " .	

. 10.0000mA가 10.00mA . 가

CL Current Output	[59	
4.0000 mA		

HH :MM :SS
09 :10 :11

menu 6 1 (7ト .) (ESN) <i>Ulsoflow 309F フ</i> ト	Ultrasonic Flowmeter ESN = 07705919
menu 6 3 (menu 63 100 20mA	1) 4mA 20mA . 10 4mA	AI 1 Value Range [63 10 - 100
menu 6 4 (menu 64 100 20mA	2) 4mA 20mA . 10 4mA	A2 1 Value Range [64 10 - 100
menu 6 7 ()	FO Frequency Range 1 - 1001
1-9999Hz Note :	2000Hz Pulse Pulse	

menu 6 8 (FO . . . ブト FO . . . FO . . 100m3/h (1000Hz 100m3/h)) Low FO Flow Rate [68 0 m3/h
menu 6 9 (FO . フト FO) High FO Flow Rate [69 1000 m3/h
menu 7 0 (LCD) Always On" 7ト . "Always Off" 7ト "Proce On" "NI"	LCD Backlit option 0. Always OFF LCD Backlit option 1. Always ON
"N" . ("OFF") "	LCD Backlit option 2. Lighting For LCD Backlit option 253 sec
menu 7 1 (LCD) LCD . enter up down 7t enter . "8 " .	LCD Contrast [71 8

menu 7 2 : :	() <i>Ulsoflow 309F</i> enter	"Yes"	Working Timer [72 00000013 : 05 : 22
menu 7 3 menu 79	(No 1 Pulse) menu 78 기	Alarm # 1 Low Value [73 0 m3/h
menu 7 4	(No 1 Pulse) menu 78 7ŀ	Alarm # 1 Low Value [74 1000 m3/h
menu 7 5	(No 2 Pulse) menu 78 가	Alarm # 2 Low Value [75 0 m3/h
menu 7 6	(No 2)	Alarm # 2 Low Value [76 1000 m3/h

menu

77()		BEEPER Setup 0 . No Signal	[77
	가		BEEPER Setup 1 . Poor Signal	[77
			BEEPER Setup 2 . Not Ready (No*R)	[77
			BEEPER Setup 3 . Reverse Flow	[77
			BEEPER Setup 4 . AO Over 100%	[77
			BEEPER Setup 5 . FO Over 120%	[77
			BEEPER Setup 6 . Alarm # 1	[77
			BEEPER Setup 7 . Alarm # 2	[77
			BEEPER Setup 8 . Batch Control	[77
			BEEPER Setup 9 . POS Int Pulse	[77
			BEEPER Setup 10. NEG Int Pulse	[77
			BEEPER Setup 1i. NET Int Pulse	[77
			BEEPER Setup 12. Energy Pulse	[77
			BEEPER Setup 13. ON/OFF via RS232	[77
			BEEPER Setup 14. Fluid Change	[77

	BEEPER Setup 15. Key stroking ON	[77
	BEEPER Setup 16. Not Using	[77
menu 7 8 (PULSE)	PULSE Output Setup 0 . No Signal	[78
Puise . 가 .	PULSE Output Setup 1 . Poor Signal	[78
	PULSE Output Setup 2 . Not Ready (No*R)	[78
	PULSE Output Setup 3 . Reverse Flow	[78
	PULSE Output Setup 4 . AO Over 100%	[78
	PULSE Output Setup 5 . FO Over 120%	[78
	PULSE Output Setup 6 . Alarm # 1	[78
	PULSE Output Setup 7 . Alarm # 2	[78
	PULSE Output Setup 8 . Batch Control	[78
	PULSE Output Setup 9 . POS Int Pulse	[78
	PULSE Output Setup 10. NEG Int Pulse	[78

menu 7 9

"On"

. 가

	PULSE Output Setup 1i. NET Int Pulse	[78
	PULSE Output Setup 12. Energy Pulse	[78
	PULSE Output Setup 13. FO	[78
	PULSE Output Setup 14. FO via RS-232C	[78
	PULSE Output Setup 15. ON/OFF via RS-232	[78
	PULSE Output Setup 16. Fluid Change	[78
	PULSE Output Setup 17. Not Using	[78
	1	
()	RELAY Output Setup 0 . No Signal	[79
()	RELAY Output Setup 0. No Signal RELAY Output Setup 1. Poor Signal	[79
()	RELAY Output Setup 0. No Signal RELAY Output Setup 1. Poor Signal RELAY Output Setup 2. Not Ready (No*R)	[79 [79 [79
()	RELAY Output Setup 0. No Signal RELAY Output Setup 1. Poor Signal RELAY Output Setup 2. Not Ready (No*R) RELAY Output Setup 3. Reverse Flow	[79 [79 [79 [79
()	RELAY Output Setup 0. No Signal RELAY Output Setup 1. Poor Signal RELAY Output Setup 2. Not Ready (No*R) RELAY Output Setup 3. Reverse Flow RELAY Output Setup 4. AO Over 100%	 [79 [70 [70
	RELAY Output Setup 0. No Signal RELAY Output Setup 1. Poor Signal RELAY Output Setup 2. Not Ready (No*R) RELAY Output Setup 3. Reverse Flow RELAY Output Setup 4. AO Over 100% RELAY Output Setup 5. FO Over 120%	 [79 [79

	RELAY Output Setup 7 . Alarm # 2	[79
	RELAY Output Setup 8 . Batch Control	[79
	RELAY Output Setup 9 . POS Int Pulse	[79
	RELAY Output Setup 10. NEG Int Pulse	[79
	RELAY Output Setup 1i. NET Int Pulse	[79
	RELAY Output Setup 12. Energy Pulse	[79
	RELAY Output Setup 13. ON/OFF via RS-232	[79
	RELAY Output Setup 14. Fluid Change	[79
	RELAY Output Setup 15. Not using	[79
menu 8 0 ()	Flow Batch CTRL by 0 . Key Input	[80
	Flow Batch CTRL by 1 . AI 1 Up Edge	[80
	Flow Batch CTRL by 2 . AI 1 Down Edge	[80
	Flow Batch CTRL by 3 . AI 2 Up Edge	[80
	Flow Batch CTRL by 4 . AI 2 Down Edge	[80

	Flow Batch CTRL by [80 5 . AI 3 Up Edge
	Flow Batch CTRL by [80 6 . AI 3 Down Edge
	Flow Batch CTRL by [80 7 . AI 4 Up Edge
menu 8 1 ()	Flow Batch Controller 1000 x 1m3
Pulse Relay	
menu 8 2 () 64 , 64 5 , ,	Date Totalizer [82 0. Day
enter up down , , , , , , , , , , , , , , , , , , ,	Date Totalizer [82 1. Day
menu 8 3 ()	Automatic Correction ON

"NO"

.

menu 8 4 () : Giga Joule (GJ) Kilo-calories . GJ	Energy Unit select 0. Giga Joule (GJ)
menu 8 5 ()	Temperature Select 0. From AI 1, AI 2 Temperature Select
2. "0. From AI1, AI2" AI1 AI2	1. Fixed Difference
Al1 Al2 0~20 "1. Fixed Difference"	4~20
menu 8 6 () 7ł :	Specific Heat Select 0. Standard
0. 1. 0.0041868GJ/M3	Specific Heat Select 1. Fix specific Heat
menu 8 7 (On/Off) "ON" .	Energy Totalizer > ON
"OFF" .	Energy Totalizer > OFF

(Reset Energy Totalizer)

Reset Energy Total

Energy Multiplier

Energy Multiplier 9. x 100,000

Energy Multiplier

(E-4)

"YES"

.

menu 9 0 ()	Strength + Quality [90 UP:00.0 DN:00.0 Q=00
	Q	
	00.00~99.9	
. 00.00	, 99.9	
60.00	Q 00~99	
, 00	99	
	Q 50	

TOM/TOS x 100	[91
0.0000 %	

Fluid Sound Velocity	
0.0000 m/s	

Ulsoflow-309F

ON/OFF Time	[+0
Press ENT Wh	nen Ready
00 07-11-14	10 :49 :21
ON	0 m3/h

FLOW-DAQ

6.1	()

Display at LCD	Cause	Solution
Rom Parity Error	* System ROM	*
Stored Data Error	* System	*
SCPU Fatal Error!	* SCPU .	*
Timer Slow Error	* System	*
Timer Fast Error	System	
CPU or IRQ Error	* CPU or IRQ	*
System RAM Error	* System RAM	*
Time or Bat Error	* System date time chip error	* 제조자 에게 문의
No Display, Irratic or	*	*
Abnormal Operation		
Stroke Key - No Response	*	* 가

6.2 ()

Code	Display at menu 08	Cause	Solution
*R	System Normal	*	*
*J	SCPU Fatal Error	*	*
	Signal Not Detected	*	* .
*		*	* 9.9 a
		*	* ア ア * ア
*H	Low Signal Strength	* .	*
*H	Poor Signal Quality	*	* .
*Е	Current Loop over 20mA (No influence normally. Ignore it if no current output is being used.)	* 4-20mA current loop 120% . *	* (menu 56)
*Q	Frequency output over set value No influence normally. Ignore it if no frequency output is being used.	* 120% *	* (menu 66- menu69)
*F	Refer to Table 1.	* 가 . * .	* 7ł *
*G	Adjusting Gain>S1 Adjusting Gain>S2 Adjusting Gain>S3 Adjusting Gain>S4 (Display in Menu 00~03)	* * S1 S2 S1 S2	
*K	Pipe Empty. Set in menu 29		가 menu 29 0 .

FLOW-DAQ

			Data Format
DQD(CR)	/	(ex:+0.000000E+00m ³ /d)	\pm d.dddddE \pm dd(CR)(LF)*
DQH(CR)	/	(ex:+0.000000E+00m ³ /h)	$\pm d.dddddE \pm dd(CR)(LF)^*$
DQM(CR)	/	(ex:+0.000000E+00m ³ /m)	$\pm d.dddddE \pm dd(CR)(LF)^*$
DQS(CR)	/	(ex:+0.000000E+00m ³ /s)	$\pm d.dddddE \pm dd(CR)(LF)^*$
DV(CR)		(ex:+0.000000E+00m/s)	$\pm d.dddddE \pm dd(CR)(LF)^*$
DI+(CR)		(ex:+0000000E+00m ³)	$\pm d.dddddE \pm d(CR)(LF)^{**}$
DI-(CR)		(ex:-0000000E+00m ³)	\pm d.dddddE \pm d(CR)(LF)
DIN(CR)		(ex:+0000000E+00m ³)	$\pm d.dddddE \pm d(CR)(LF)$
DID(CR)	(ID)	(ex:00000)	dddd(CR)(LF)
DL(CR)	(ex:UP=00.0 DN=00.0 Q=00)	UP=dd.d,DN=dd.d,Q=dd(CR)(LF)
DT(CR)		(ex:08-01-16,10:18:51)	yy-mm-dd hh:mm:ss(CR)(LF)
M@(CR)***			
LCD(CR)			
FOdddd(CR)	FO ddd Hz		

.

Command		Function		Data Format
ESN(CR)	ESN		(ex:07005900F)	Ddddddd(CR)(LF)
RING(CR)	MODEM			
OK(CR)	GSM			No action
GA	GSM			Please contact factory for detail
GB	GSM			
GC	GSM			
DUMP(CR)				In ASCII string format
DUMP0(CR)				In ASCII string format
DUMP1(CR)				In ASCII string format,24KB in length
W	IDN	00~255		
Ν	IDN	,	00~255	
Р				
&	6	가		

Note * : CR LF ** : "d" 0~9 *** : @ . 30 "0"

7.3

7.3.1 Prefix P (P)

Ρ

가

CRC check 2

DI+(CR) , DI+(CR) +1234567E+0m³

.

(CR)(LF)(hexadecimal2BH, 31H, 32H, 33H, 34H, 35H, 36H, 37H, 45H, 2BH, 30H, 6DH,33H,20H, 0DH, 0AH),PDI(CR)+1234567E+0m3!F7(CR)(LF), '!'2BH, 31H, 32H, 33H, 34H, 35H, 36H, 37H, 45H, 2BH, 30H, 6DH, 33H, 20H

.

"!" (20H)가

1

```
7.3.2 Prefix W ( W)
     W
                                               W + IDN+
                               .
             65534
                    13(0DH), 10 (0AH), 42(2AH,*), 38(26H, &)
                                                                     가
       0
         ...
                                                            W12345DV(CR) .
      , IDN=12345
7.3.3 Prefix N ( N)
      Ν
                       IDN
7.3.4
                  &
&
                 6
      IDN=4321
                                        3
                                               (1)
                                                        (2)
                                                               (3)
                        W4321DQD&DV&DI+(CR)
              +1.234567E+12m3/d(CR)
       :
              +3.1235926E+00m/s(CR)
              +1234567E+0m3(CR)
```

7.4 Code for the Keypad

Kov	Hexadecimal	Decimal	ASCII	Kov	Hexadecimal	Decimal	ASCII
rtey	Key Code	Key Code	Code	rey	Key Code	Key Code	Code
0	30H	48	0	8	38H	56	8
1	31H	49	1	ß	39H	57	9
2	32H	50	2	•	3AH	58	•••
3	33H	51	3	clear	3BH,0BH	59	•
4	34H	52	4	menu	3CH,0CH	60	v
5	35H	53	5	enter input	3DH,0DH	61	Ш
6	36H	54	6	up	3EH	62	>
7	37H	55	7	down	3FH	63	?

"M"

8.2

Ulsoflow-309F

가

1: Energy (caloric quantity) = Flow Value × Difference in Temperature × Specific Heat

() = X X

Note:

menu 84

9.1

Cameron Hydraulic Data Book (17^{t.} ed., Ingersoll-Rand 1988) Table of Physical and Chemical Constants (13th ed., Longmans, 1966) .

가

.

.

2~5

.

.

Liquid		t ()	c (m/s)	t ()	c (ft/s)	cSt
A satal dahu da Cili	0110	16.1		61		0.305
Acetaidenyde CH ₃ CHO		20		68		0.295
Acetic Acid		50	1584	122	5196	
	10%	15		59		1.35
	50%	15		59		2.27
	80%	15		59		2.85
	Concglacial	15		59		1.34
Acotic aphydrida		24	1384	75	4540	
Acetic annyunde		15		59		0.88
Acetone CH ₃ COC	H ₃	20	1190	68	3903	0.41
Acetylene terabror	mide	28	1007	82	3303	
Acetylene tetrachle	oride	28	1155	82	3788	
	allyl	20		68		1.60
	aliyi	40		104		0.90
	butyl-n	20		68		3.64
		70		158		1.17
Alaahal	Ethyl(grain) C ₂ H ₅ OH	20		68		1.52
AICONO		37.8		100		1.2
		15		59		0.74
	Methyl(wood) Ch3Oh	0		32		1.04
	propyl	20		68		2.8
		50		122		1.4
Ammonia		-17.8		0		0.30
Amyl Acetate		29.2	1173	85	3847	
n-Amyl alcohol		28.6	1224	83	4015	
iso-Amyl ether		26	1153	79	3782	
Aniling		20	1656	68	5432	4.37
Aniline		10		50		6.4
Argon		-183	816.7	-297	2679	

	Liquid	t ()	c (m/s)	t ()	c (ft/s)	cSt
		25		77		159~324
	RC-0, MC-0, SC-0	37.8		100		60~108
		37.8		100		518~1080
		50		122		159~324
		50		122		518~1080
	KC-2, MC-2, 3C-2	60		140		215~430
Asphalt blended	RC-3 MC-3 SC-3	50		122		1295~2805
Asphalt blended		60		140		540~1080
	RC-4 MC-4 SC-4	60		140		1725~4315
		82.8		180		270~540
	RC-5, MC-5, SC-5	60		140		6040~18340
		82.8		180		647~1295
	RS-1 MS-s SS-1	25		77		33~216
		37.8		100		19~75
	Fed # 1	25		77		215~1510
Asphalt		37.8		100		75~367
emulsions	Fed # 2 V. VI					
	SAE-5W	-17.8		0		1295 max
	SAE-10W	-17.8		0		1295~2590
Automotive	SAE-20W	-17.8		0		2590~10350
Crankcase	SAE-20	98.9		210		5.7~9.6
Oils	SAE-30	98.9		210		9.6~12.9
	SAE-40	98.9		210		12.9~16.8
	SAE-50	98.9		210		16.8~22.7
	SAE-75W	98.9		210		4.2 min
Automotive	SAE-80W	98.9		210		7.0 min
Gear	SAE-85W	98.9		210		11.0 min
Oil	SAE-90	98.9		210		14~25
	SAE-14Q	98.9		210		25~43
	SAE-150	98.9		210		43 min
Beer		20		68		1.8
Benzene (Benzol)	C ₆ H ₆	20	1321	68	4333	0.744
		0		32		1.0
Benzophenone		100	1316	212	4316	
Bismuth		285	1663	545	5455	
Bone oil		54.4		130		47.5
		100		212		11.6
Bromine		20		68		0.34
Bromobenzene		50	1074	122	3523	
Bromoform		25	908	77	2978	
Butane-n		-1.1		-50		0.52
				30		0.35
Butyl acetate		30	1172	86	3844	
n-Butyl alcohol		20	1257.7	68	4125	

Liquid		t ()	c (m/s)	t ()	c (ft/s)	cSt
Iso-Butyl bromide		-104	1450	-155	4756	
		20		68		1.61
Butyric acid h		0		32		2.3 ср
Cadmium		360	2150	680	7052	
Caesium		130	967	266	3172	
Calaiwaa ah la rida	5 %	18.3		65		1.156
Calcium chloride	25 %	15.6		60		4.0
Carbolic acid (phe	nol)	18.3		65		11.83
Carbon tatraablari		20		68		0.612
Carbon tetrachion		37.8		100		0.53
		25	1149	77	3769	
Carbon disulphide	CS ₂	0		32		0.33
		20		68		0.298
Carbone tetrachlo	ride	20	938	68	3077	
		18.6	1500	65	4920	
Castor oil		37.8		100		259~325
		54.4		130		98~130
China wood oil		20.6		69		308.5
		37.8		100		125.5
Chlorine		20	850	68	2788	
m-Chlornirtobenze	ene	40	1368	104	4487	
Chlorobenzene		25	1302	77	4271	
		20		68		0.38
Chloroform		25	995	77	3264	
		60		140		0.35
Coconut oil		37.8		100		29.8~31.6
		54.4		130		14.7~15.7
Cod oil		37.8		100		32.1
		54.4		130		19.4
Corp oil		54.4		130		28.7
	1	100		212		8.6
	22 Baume	21.1		70		32.1
		37.8		100		27.5
Corn starch	24 Baume	21.1		70		129.8
solutions		37.8		100		95.2
	25 Baume	21.1		70		303
	20 Baume	37.8		100		173.2
Cotton cood oil		37.8		100		37.9
	1	54.4		130		20.6
	48º API	15.6		60		3.8
		54.4		130		1.6
Crude Oil		15.6		60		9.7
		54.4		130		3.5
	35.6º API	15.6		60		17.8
	- 55.0° AL 1	54.4		130		4.9
	Liquid	t ()	c (m/s)	t ()	c (ft/s)	cSt
--------------------	-------------------------	-------	---------	-------	----------	-----------
		15.6		60		23.2
Crude Oil	32.0° API	54.4		130		7.1
	Solt Crook	15.6		60		77
	Salt Creek	54.4		130		6.1
Cyclohexane		20	1278	68	4192	
Cyclohexanol		30	1622	86	5320	
Decano n		-17.8		0		2.36
Decane-n		37.8		100		1.001
I-Decene		20	1250	68	4100	
Deuterium oxide		20	1381	68	4530	
	20	37.8		100		2~6
	20	54.4		130		1~3.97
	חצ	37.8		100		6~11.75
Diesel Fuel oils	50	54.4		130		3.97~6.78
Dieser Fuer ons	4D	37.8		100		29.8 max
	40	54.4		130		13.1 max
	50	50		122		86.6 max
	50	71.1		160		35.2 max
Diethyl Ether		20		68		0.32
Diothylono glycol		21.1		70		32
		30	1533	86	5028	
Diethylene glycol	monoethyl ether	30	1296	86	4251	
Dimethyl siloxane	(Dow Corning 200 fluid)	20	912.3	68	2992	
Diphenyl		100	1271	212	4169	
Diphenyl ether		30	1462	86	4795	
Ethanol		20	1156	68	3792	
Ethanol amide		25	1724	77	5655	
Ether (diethyl)		25	985	77	3231	
Ethyl acetate		15		59		0.4
	01300002115	20	1133	68	3716	0.49
Ethyl alcohol		20	1161.8	68	3811	
Ethyl bromide	C _o H-Br	10	932	50	3057	
	0211501	20		68		0.27
Ethyl glycol		30	1606	86	5268	
Ethyl iodide		20	876	68	2873	
Ethylene bromide		20		68		0.787
Ethylene chloride		20		68		0.668
Ethylene dibromic	le	24	1014	75	3326	
Ethylene dichlorid	e	23	1240	73	4067	
Ethylene glycol		21.1		70		17.8
		30	1616	86	5300	
Ethylene glycol m	onoethyl ether	30	1279	86	4195	
Ethylene glycol m	onomethyl ether	30	1339	86	4392	
Formaldehyde		25	1587	77	5205	
Formamide		25	1610	77	5281	

	Liquid	t ()	c (m/s)	t ()	c (ft/s)	cSt	
Formic Acid		20	1299	68	4261		
	10%	20		68		1.04	
	50%	20		68		1.2	
	80%	20		68		1.4	
	Conc.	20		68		1.48	
	-11	21.1		70		1.04 1.2 1.4 1.4 1.48 0.21 0.27 1.45 2.39~4.28 2.69 3.0~7.4 2.11~4.28 2.69~5.84 2.06~3.97 7.4~26.4 4.91~13.7 26.4 13.6~67.1 97.4~660 37.5~172 13.9 7.4 0.88 0.71 0.64 0.40 648	
Freon	-12	21.1		70		cSt 1.04 1.2 1.4 1.48 0.21 0.27 1.45 2.39-4.28 2.69 3.0-7.4 2.11-4.28 2.69-5.84 2.06-3.97 7.4-26.4 4.91-13.7 26.4 13.6-67.1 97.4~660 37.5~172 13.9 7.4 0.64 0.46 0.46 0.46 0.46 0.71 0.64 0.46 0.40 0.88 0.71 0.64 0.46 0.46 0.47 880~2420 0.928 0.511	
	-21	21.1		70		1.45	
	1	21.1		70		2.39~4.28	
	1	37.8		100		2.69	
	2	21.1		70		3.0~7.4	
	2	37.8		100		2.11~4.28	
	2	21.1		70		2.69~5.84	
Fuel Oile	5	37.8		100		2.06~3.97	
	54	21.1		70		7.4~26.4	
	37	27.8		100		4.91~13.7	
	5P	21.1		70		26.4	
	56	37.8		100		13.6~67.1	
	6	50		122		97.4~660	
	0	71.1		160		37.5~172	
Gallium		50	2740	122	8987		
Gas oils		21.1		70		13.9	
		37.8		100		7.4	
		15.6		60		0.88	
	a	37.8		100		0.71	
Gasolines	b	15.6		60		0.64	
	C	15.6		60		0.46	
	•	37.8		100		0.40	
Glycerin	-	30	1923	86	6307		
	100 %	20.3		69		648	
	100 /0	37.8		100		176	
	50% Water	20		68		5.29	
		60		140		1.85cp	
Glucose		37.8		100		7.7M~22M	
		65.6		150		880~2420	
Guaicol		100	1252	212	4107		
Helium		-268.8	179.8	-452	590		
		-17.8		0		0.928	
n-Heptane		22.4	1150	72	3772		
		37.8		100		0.511	
Heptane		30	1082	86	3549		
Heptyne		30	1159	86	3802		
Hexane		20	1203	68	3946		
n-Hexane		-17.8		0		0.683	
		21.2	1085	70	3559		

	Liquid	t ()	c (m/s)	t ()	c (ft/s)	cSt
n-Hexane		37.8		100		0.401
Honey		37.8		100		73.6
Hydrogen		-256	1187	-429	3893	
	685	15.6		60		647
	SSU at 100	93.3		200		14.5
	420	15.6		60		367
	SSU	93.3		200		11
Industrial	315	15.6		60		259
Lubricants	SSU	93.3		200		9
Turbine Olis	215	15.6		60		151
	SSU	93.3		200		7.3
	150	15.6		60		99
	SSU	93.3		200		6
		37.8		100		23~34
	# 8	54.4		130		13~18
		37.8		100		37~72
Machine	# 10	54.4		130		18~25
Lubricants		37.8		100		72~83
	# 20	54.4		130		25~39
		37.8		100		75~119
	# 30	54.4		130		39~55
		37.8		100		30~40
Cutting Oil	# 1	54.4		130		17~23
Cutting Oil		37.8		100		40~46
	# 2	54.4		130		23~26
Indium		260	2215	500	7265	
		37.8		100		550~2200
Ink Printers		54.4		130		238~660
		21.1		70		24.1 max
Insulating oil		37.8		100		11.75 max
		20		68		2.71
Kerosene		25	1315	77	4313	
Jet Fuel(av)		-34.4		-30		7.9
		37.8		100		62.1
Lard		54.4		130		34.3
		37.8		100		41~47.5
Lard oil		54.4		130		23.4~27.1
Lead		340	1760	644	5773	
		37.8		100		30.5
Linseed oil		54.4		130		18394
		37.8		100		29.8
Menhaden oil	Menhaden oil			130		18.2
Menthol		50	1271	122	4169	
Merck		20.2	1482.3	68	4862	
Mercury		20	1454	68	4769	-

	Liquid	t ()	c (m/s)	t ()	c (ft/s)	cSt
Moroury		21.1		70		0.118
Mercury		37.8		100		0.11
Methanol		20	1118	68	3667	
Methyl acetate		20		68		0.44
		30	1131	86	3710	
Methyl alcohol		20	1121.2	68	3678	
Methyl bromide		2	905	36	2968	
Methyl iodide		30		68		0.213
		30	815		2673	
Methylene bromic	le	24	971.2		3186	
Methylene chlorid	e	23.5	1064	74	3490	
Methylene iodide		24	977.7	75	3207	
Milk	Τ	20		68		1.13
	a, first	37.8		100		281~5070
		54.4		130		151~1760
Molasses	b. second	37.8		100		1410~13.2M
		54.4		130		660~3.3M
	c. Blackstrap	37.8		100		2630~55M
		54.4		130		1320~16.5M
Naphthalene		80		176		0.9
Naphtha		25	1225	77	4018	
Neats foot oil		37.8		100		49.7
		54.4		130		27.5
Nitrobenzene		20		68		1.67
		23.8	1462	75	4795	
Nitrogen		-188.9	744.7	-308	2443	
Nonane		20	1248	68	4093	
i-nonane		20	1218	68	3995	
Nonene-n		-17.8		0		1.728
		37.8		100		0.807
		-17.8		0		1.266
n-Pulseane		20	1192	68	3910	
		37.8		100		0.645
Oil (lubricating)		10	1625	50	5330	
Oll of campnor		25	1390	//	4559	
		20	1442	08	4730	
		21.7	1440	100	4723	
Olive oli		37.8		100		43.2
Oxygen		54.4		130		24.1
Oxygen		- 182.9	912	-297	2991	
Palm oil		51.0		100		42
Paraldobyda		54.4		130	2026	20.4
ralaluenyue		28	1197	δ2 100	3920	
Peanut oil		51.0		100		42
Paraldehyde Peanut oil	Nitrogen Nonane -nonane Nonene-n N-Pulseane Dil (lubricating) Dil of camphor Dleic acid Dive oil Daygen Paraldehyde Peanut oil		1197	82 100	3926	42 23.4

	Liquid		t ()	c (m/s)	t ()	c (ft/s)	cSt
I-pentadecene			20	1351	68	4431	
Pentane			20	1008	68	3306	
iso-pentane			25	985	77	3231	
			-17.8		0		0.508
n-pentane			20	1044	68	3424	
			26.7		80		0.342
Detroletum			54.5		130		20.5
Fellolatum			71.1		160		15
Phenol			100	1274	212	4179	
Potassium			150	1840	302	6035	
n-propanol			20	1220	68	4002	
Propionic acid			20		68		1.13
n-Propyl acetate			26	1182	79	3877	
n-Propyl alcohol			20	1223.2	68	4012	
Propylene glycol			21.1		70		52
Pyridine			20	1445	68	4740	
Quenching oil (typ	ical)						10~200
Papasaad ail			37.8		100		54.1
Rapeseed on			54.4		130		31
Posin oil			37.8		100		324.7
			54.4		130		129.9
Rosin (wood)			37.8		100		216~11M
			93.3		200		108~4400
Rubidium			160	1260	320	4133	
Socomo sood oil			37.8		100		39.6
Sesame seed on			54.4		130		23
Silicone tetrachlor	ide		30	766.2	86	2513	
Sodium			150	2500	302	8200	
Sodium Chloride (fused)		850	1991	1562	6530	
	5 %		20		68		1.097
	25 %		15.6		60		2.4
Sodium hydroxide		20 %	18.3		65		4.0
(caustic soda)		30 %	18.3		65		10.0
Sova boan oil			37.8		100		35.4
			54.4		130		19.64
Sporm oil			37.8		100		21~23
Sperin on			54.4		130		15.2
	96.4.5	Priv	37.8		100		180Mcp
	00.4	DIX	82.2		180		1750cp
	0440	Priv	37.8		100		48Mcp
Sugar solution	04.4 [DIX	82.2		180		800cp
corn syrup	92.2 F	Priv	37.8		100		17Mcp
	02.3 E		82.2		180		380cp
	00.0		37.8		100		6900cp
	00.3 E	лік 	82.2		180		230cp

	Liquid	t ()	c (m/s)	t ()	c (ft/s)	cSt
Sugar solution	70 4 D-in	37.8		100		3200cp
corn syrup	78.4 Brix	82.2		180		160cp
		21.1		70		49.7
	60 Brix	37.8		100		18.7
		21.1	t () c (m/s) t (37.8 82.2 21.1 37.8 21.1 37.8 21.1 37.8 21.1 37.8 21.1 37.8 21.1 37.8 21.1 37.8 21.1 37.8 21.1 37.8 20 21.1 20 21.1 21.1 20 21.1 37.8 37.8 37.8 50 100	70		95.2
	64 Brix	37.8		100		cSt 3200cp 160cp 13200cp 160cp 18.7 95.2 131.6 216.4 59.5 138.6 1210 238 216.4 238 216.4 238 24100 238 241210 238 2595 14.6 14.6 14.6 14.6 3300~66M 141~308 3300~66M 141~308 3300~66M 141~308 141~308 3300~66M 440~4400 108.2 3300~66M 108.2 3300~66M 108.2 3330~64M 108.2 11.6~14.3 11.6~14.3 11.6~14.3 11.6~14.3 1.1.6~14.3 1.1.6~14.3
		21.1		70		216.4
Sugar solution	68 Brix	37.8		100		59.5
Sucrose		21.1		70		595
	72 Brix	37.8		100		138.6
		21.1		70		1210
	74 Brix	37.8		100		238
		21.1		70		2200
	76 Brix	37.8		100		440
Sulphur		130	1332	266	4369	
	100%	20		68		14.6
Sulphuric acid	95%	20		68		14.5
	60%	20		68		4.4
T		21.1		70		600~1760
lar, coke oven		37.8		100		141~308
T		21.1		70		3300~66M
iar, gas nouse		37.8		100		440~4400
Ter pipe		37.8		100		559
iai, pine		55.6		132		108.2
	DT 2	50		122		43.2~64.9
	111-2	100		212		8.88~10.2
	RT-4	50		122		86.6~154
		100		212		11.6~14.3
	RT-6	50		122		216~440
Tar road		100		212		16.8~26.2
141, 1040	PT_8	50		122		660~1760
		100		212		31.8~48.3
	PT-10	50		122		4.4M~13.2M
		100		212		53.7~86.6
	TP_12	50		122		25M~75M
	111-12	100		212		108~173
Tetralin		20	1482	68	4868	
Tin (molten)		240	2470	464	8102	
Toluene	20		68		0.68	
Torucite		30	1275	86	4182	
o-Toluidine		22.5	1669	73	5474	
I-tridecene		20	1313	68	4307	
Tri elhylene glyco		21.1		70		40
Tri ethylamine		0	1189	32	3900	
Turpentine		25	1225	77	4018	

FLOW-DAQ

	Liquid	t ()	c (m/s)	t ()	c (ft/s)	cSt
Turner		37.8		100		86.6~95.2
Turpentine		54.4		130		39.9~44.3
I-Undecene		20	1275	68	4182	
Versieh ener		20		68		313
varnisn, spar		37.8		100		143
	Distilled	20	1482.9	68	4864	1.0038
Matar	Freeh	15.6		60		1.13
water	riesn	54.4		130		0.53
	Sea					(s) CSI 86.6~95.2 39.9~44.3 4182 313 143 4864 1.0038 1.13 0.53 1.15 4944 35~39.6 19.9~23.4 2883 0.93 4435
Water (sea) (surfa	ce,3.5% salinity)	15	1507.4	59	4944	
Whole eil		37.8		100		35~39.6
		54.4		130		19.9~23.4
Xylene hexafluorio	de	25	879	77	2883	
		20		68		0.93
0-Aylene		22 1352 72 4435				
Zinc		450	2700	842	8856	

9.2

(

Sound Velocity(m/s) Pipe Material Liner Material Sound Velocity(m/s) Steel 3206 PTFE 1225 3150 ABS 2286 Titanium 3048 4190 Aluminum Cement 2270 2540 Brass Bitumen Cast Iron 2460 Porcelain enamel 2540 Bronze 2270 Glass 5970 3430 2280 Fiber glass-epoxy Plastic 3276 1600 Glass Polyethylene Polyethylene 1950 PTFE 1450 PVC 2540 Rubber 1600

)

g	3	
J	.0	

(at 1 atm : : m/sec)

t()	v(m/sec) t()		v(m/sec)	t()	v(m/sec)	t()	v(m/sec)		
0	1402.3	25	1496.6	50	1542.5	75	1555.1		
1	1407.3	26	1499.2	51	1543.5	76	1555.0		
2	1412.2	27	1501.8	52	1544.6	77	1554.9		
3	1416.9	28	1504.3	53	1545.5	78	1554.8		
4	1421.6	29	1506.7	54	1546.4	79	1554.6		
5	1426.1	30	1509.0	55	1547.3	80	1554.4		
6	1430.5	31	1511.3	56	1548.1	81	1554.2		
7	1434.8	32	1513.5	57	1548.9	82	1553.9		
8	1439.1	33	1515.7	58	1549.6	83	1553.6		
9	1443.2	34	1517.7	59	1550.3	84	1553.2		
10	1447.2	35	1519.7	60	1550.9	85	1552.8		
11	1451.1	36	1521.7	61	1551.5	86	1552.4		
12	1454.9	37	1523.5	62	1552.0	87	1552.0		
13	1458.7	38	1525.3	63	1552.5	88	1551.5		
14	1462.3	39	1527.1	64	1553.0	89	1551.0		
15	1465.8	40	1528.8	65	1553.4	90	1550.4		
16	1469.3	41	1530.4	66	1553.7	91	1549.8		
17	1472.7	42	1532.0	67	1554.0	92	1549.2		
18	1476.0	43	1533.5	68	1554.3	93	1548.5		
19	1479.1	44	1534.9	69	1554.5	94	1547.5		
20	1482.3	45	1536.3	70	1554.7	95	1547.1		
21	1485.3	46	1537.7	71	1554.9	96	1546.3		
22	1488.2	47	1538.9	72	1555.0	97	1545.6		
23	1491.1	48	1540.2	73	1555.0	98	1544.7		
24	1493.9 49		1541.3	74	1555.1	99	1543.9		

9.4.1	&	&	

\sim	/	(Carbon	Still (KS	5 D357	8 / JIS 0	33459)		Stainless Still										Copper Pipe						
S	ize	0.0	KS(S	.G.P)	SC	1 20	SCH	40	0.0	SC	H 5	50	H10	SC	H20	SCI	440	0.0	Kt	уре	Lt	ype	Mt	ype	
mm	Inch	0.0	t	I.D	t	I.D	t	I.D	0.0	t	I.D	t	I.D	t	I.D	t	I.D	0.0	t	I.D	t	I.D	t	I.D	
10	3/8	17.3	2.3	12.7	-	-	2.3	12.7	17.3	1.20	14.9	1.65	14.0	2.0	13.3	2.31	12.7	12.70	1.24	10.22	0.89	10.92	0.64	11.42	
15	1/2	21.7	2.8	16.1	-	-	2.8	16.1	21.7	1.65	18.4	2.11	17.48	2.5	16.7	2.77	16.2	15.9	1.24	13.4	1.02	13.84	0.71	14.46	
20	3/4	27.2	2.8	21.6	-	-	2.9	21.4	27.2	1.65	23.9	2.11	23.0	2.5	22.2	2.87	21.5	22.2	1.65	18.92	1.14	19.94	0.81	20.6	
25	1	34.0	3.2	27.6	-	-	3.4	27.2	34.0	1.65	30.7	2.77	28.5	3.0	28.0	3.38	27.2	28.6	1.65	25.28	1.27	26.04	0.89	26.8	
32	1.1/4	42.7	3.5	35.7	-	-	3.6	35.5	42.7	1.65	39.4	2.77	37.2	3.0	36.7	3.58	35.5	34.9	1.65	31.62	1.40	32.12	1.07	32.78	
40	1 1/2	48.6	3.5	41.6	-	-	3.7	41.2	48.6	1.65	45.3	2.77	43.1	3.0	42.6	3.68	41.2	41.3	1.83	37.62	1.52	38.24	1.24	38.8	
50	2	60.5	3.8	52.9	3.2	54.1	3.9	52.7	60.5	1.65	57.2	2.77	55.0	3.5	53.5	3.91	52.7	54	2.11	49.76	1.78	50.42	1.47	51.04	
65	2 1/2	76.3	4.2	67.9	4.5	67.3	5.2	65.9	76.3	2.11	72.1	3.05	70.2	3.5	69.3	5.16	66.0	66.7	2.41	61.86	2.03	62.62	1.65	63.38	
80	3	89.1	4.2	80.7	4.5	80.1	5.5	78.1	89.1	2.11	84.9	3.05	83.0	4.0	81.1	5.49	78.1	79.4	2.77	73.84	2.29	74.8	1.83	75.72	
90	3 1/2	102	4.2	93.2	4.5	92.6	5.7	90.2	102	2.11	97.4	3.05	95.5	4.0	93.6	5.74	90.1	-	-	-	-	-	-	-	
100	4	114	4.5	105.3	4.9	104.5	6.0	102.3	114	2.11	110.1	3.05	108.2	4.0	106.3	6.02	102.3	105	3.4	97.98	2.79	99.2	2.41	99.96	
125	6	140	4.6	130.8	5.1	129.6	6.6	126.6	140	2.77	134.3	3.40	133.0	5.0	129.8	6.55	126.7	130	4.08	122.1	3.18	123.8	2.77	124.6	
150	6	165	5.0	155.2	5.5	154.2	7.1	151.0	165	2.77	159.7	3.76	157.7	5.0	155.2	7.11	151.0	156	4.88	145.8	3.56	148.5	3.10	149.4	
200	8	217	5.8	204.9	6.4	203.7	8.2	200.1	217	2.77	211.0	4.19	208.1	6.5	203.5	8.18	200.1	206	6.88	192.6	5.08	196.2	4.32	197.7	
250	10	267	6.6	254.2	6.4	254.6	9.3	248.8	267	2.77	261.9	4.57	258.3	6.5	254.4	9.27	248.9	257	8.59	240.0	6.35	244.5	5.38	246.4	
300	12	319	6.9	304.7	6.4	305.7	10.3	297.9	319	3.40	311.7	4.78	308.9	6.5	305.5	9.52	299.5	-	-	-	-	-	-	-	
350	14	356	7.9	339.8	7.9	339.8	11.1	333.4	356	3.96	347.7	4.78	346.0	6.35	342.9	9.52	336.6	-	-	-	-	-	-	-	
400	16	406	7.9	390.6	7.9	390.6	12.7	381.0	406	3.96	398.5	4.78	396.8	6.35	393.7	9.62	387.4	-	-	-	-	-	-	-	
450	18	467	7.9	441.4	7.9	441.4	14.3	428.6	467	4.78	447.6	4.78	447.6	6.35	444.5	9.62	438.2	-	-	-	-	-	-	-	
500	20	508.0	7.9	492.2	9.5	489.0	15.1	477.8	508.0	4.78	498.4	5.54	496.9	6.35	495.3	9.52	489.0	-	-	-	-	-	-	-	
550	22	589	-	-	9.5	569.8	-	-	589	4.78	579.2	5.54	577.7	6.35	576.1	9.52	569.8	-	-	-	-	-	-	-	
600	24	610	-	-	9.5	590.6	-	-	610	4.78	600.0	6.35	596.9	6.35	596.9	9.52	590.6	-	-	-	-	-	-	-	

•

9.4.2 PVC & PVC Schedule & PP-HP & PVDF

	PVO PIPE									PVC	SCHE	DULE P	IPE					PP-H	PIPE			PVDF-HP PIPE			
Size		V	P	W	â1	V	G2	Size		SCH	H 40	80	Hâŭ	SCH	1120	Size		Pt	16	PN	10	PN	110	PN	16
A	0.0	t	I.D	t	I.D	t	I.D	inch	0.0	t	I.D	1	I.D	t	I.D	inch	0.0		I.D	t	I.D	t	I.D	t	I.D
16	22	3.0	16.0	2.7	16.6	-	-	1	33.4	3.38	26.64	4.55	24.3	5.1	23.24	1/4	20	1.8	16.4	2.5	15	-	-	1.9	16.2
20	26	3.0	20.0	2.7	20.6	-	-	1.1/4	42.2	3.56	35.08	4.85	32.5	5.46	31.28	3/4	28	1.8	21.4	2.7	19.6	-	-	1.9	21.2
25	32	3.5	25.0	3.1	25.8	-	-	1 1/2	48.3	3.68	40.94	5.08	38.1	5.72	36.86	1	32	1.9	28.2	3	26	-	-	2.4	27.2
30	38.0	3.5	31.0	3.1	31.8	-	-	2	60.3	3.91	52.48	5.64	49.2	6.4	47.6	1.1/4	40	2.3	35.4	3.7	32.6	-	-	2.4	35.2
35	42	-	-	3.1	35.8	1.8	38.4	$2 \ 1/2$	73.0	6.16	62.68	7.01	59.0	7.6	67.76	$1 \ 1/2$	60	2.9	44.2	4.60	40.8	-	-	3	44
40	48	4.0	40.0	3.6	40.8	1.8	44.4	3	88.9	5.49	77.92	7.62	73.7	8.9	71.12	2	63	3.6	55.8	5.8	51.4	2.5	58	3	57
80	60	4.6	61.0	4.1	51.8	1.8	56.4	3 1/2	102	6.74	90.12	8.08	85.4	11.1	79.4	$2 \ 1/2$	76	4.3	66.4	6.9	61.2	2.6	70	3.6	67.8
65	76	5.2	65.6	4.1	67.8	2.2	71.6	4	114	6.02	102.3	8.66	97.2	12.7	88.9	3	90	5.1	79.8	8.2	73.6	2.8	84.4	4.3	81.4
75	89	5.9	77.2	5.5	78.0	2.7	83.6	5	141	6.55	128.2	9.52	122.3	14.3	112.8	4	110	6.3	97.4	10.0	90.0	3.4	103.2	5.3	99.4
100	114	7.1	99.8	6.6	100.8	3.1	107.8	6	168	7.11	154.1	10.97	146.4	18.2	131.8	4 1/2	125	7.1	110.8	11.4	102.2	3.9	117.2	6	113
125	140	8.3	123.4	7.0	126	4.1	131.8	8	219.0	8.18	202.6	12.7	193.6	21.4	176.2	5	140	8.0	124	12.8	114.4	4.3	131.4	6.7	126.6
150	165	9.6	145.8	8.9	147.2	5.1	154.8	10	274	9.37	255.2	15.06	243.8	25.4	229.1	6	160	9.1	141.8	14.6	130.8	4.9	150.2	7.7	144.6
200	216	11.1	193.8	10.3	195.4	6.5	203.0	12	324	10.31	303.2	17.45	288.9	-	-	7	180	10.2	159.6	16.4	147.2	5.5	169	8.60	162.8
250	267	13.4	240.2	12.7	241.6	7.8	251.4	14	356	11.00	333.6	19.05	317.5	-	-	8	200	11.4	177.2	18.2	163.6	6.2	187.6	9.6	180.8
300	318	16.1	285.8	15.1	287.8	9.2	299.6	16	406	12.70	381.0	21.41	363.6	-	-	9	225	12.8	199.4	20.5	184	6.9	211.2	10.8	203.4
-	-	-	-	-	-	-	-	18	457	14.27	428.7	23.86	409.5	-	-	10	250	14.2	221.6	22.8	204.4	7.7	234.6	11.9	226.2
-	-	-	-	-	-	-	-	20	508.0	15.06	477.9	26.19	455.6	-	-	11	280	15.9	248.2	25.5	229	8.6	262.8	13.4	253.2
-	-	-	-	-	-	-	-	24	610	17.45	574.7	30.94	547.7	-	-	12	315	17.9	279.2	28.7	257.6	9.7	295.6	15	285
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	355	20.1	314.8	32.3	290.4	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	24	400	22.7	354.6	38.4	327.2	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

9.4.3 PEM & Ductile Iron

Ductal Pipe										
Size	O D	Class 1		Class 2		Class 3				
A		t	1.0	t	LD.	t	I.D			
80	98	7.4	83.2	6.7	84.6	6	86			
100	118	7.5	103.0	6.8	104	6.1	108			
125	144	7.6	128.8	6.9	130	6.2	132			
150	170	7,7	154.6	7	156	6.3	157			
200	222	7.8	206.4	7.1	208	6.4	209			
250	274	8.3	257.4	7.5	259	8,8	260			
300	326	8.8	308.4	8	310	7.2	312			
350	378	9.4	359	8.5	361	7.7	363			
400	429	9.9	409	9	411.0	8.1	413			
450	480	10.5	459	9.5	461	8.6	463			
500	532	11	510	10.0	512	9.0	514			
600	635	12.1	611	11	613	9.9	615			
700	738	13.2	712	12	714	10.8	716.4			
800	842	14.3	813	13	816	11.7	819			
900	945	15.4	914	14	917	12.6	920			
1000	1048	16.5	1015	15	1018	13.5	1021			
1100	1144	17.6	1109	16	1112	14.4	1115			
1200	1255	18.7	1218	17	1221	15.3	1224			

PEM PIPE											
Size	OD	Normal		Class 1		Class 2					
A		1	1.D	T	1.0	T	1.D				
16	21.5	2.5	16.5		-	-	-				
20	27	3.0	21.0	-	-	-	-				
25	34	3.5	27.0	~	1	-	-				
30	42	4.0	34,0	+	-	-					
40	48	4.5	39.0		-	-	-				
50	60	5.5	49.0	1	Ξ.	2	-				
65	76	6.0	64.0	5.6	64.8	4.9	66.2				
75	89	8.1	72.8	6.6	75.8	5.7	77.6				
100	114	10,4	93.2	8.4	97.2	7.4	99.2				
125	140	12.7	115	10.4	119	9.0	122				
150	165	15.3	134	12.2	141	10.6	144				
200	216	19.5	177	16	184	13.9	188				
250	267	24.3	218	19.8	227	17.2	232.6				
300	318	28.9	260	23.6	271	20.5	277				
350	370	33.6	303	27.4	315	23.9	322				
400	420	38.2	344	31.1	358	27.1	366				
450	457	41.6	374	33.9	389	29.5	398				
500	508	46.2	416	37.6	433	32.8	442				
550	559	50.8	457	41.4	476	36.1	487				
€00	610	55.4	499	45.2	519.2	39.3	531				